EHR COVID-19 DREAM Challenge

EHR DREAM Challenge COVID-19

 

The rapid rise of COVID-19 has challenged healthcare globally. The underlying risks and outcomes of infection are still incompletely characterized even as the world surpasses 1 million infections. Due to the importance and emergent need for better understanding of the condition and the development of patient-specific clinical risk scores and early warning tools, CD2H has developed a platform to support analytic and machine learning hypotheses on clinical data, without data sharing, to rapidly discover and implement approaches for care. CD2H and the University of Washington (UW) School of Medicine previously applied this approach in the successful EHR DREAM Challenge that focused on Patient Mortality Prediction.

 

CD2H is asking the following challenge question:

Of patients who have had at least one clinical encounter/visit at the University of Washington Medicine and who were tested for COVID-19, can we predict who tested positive?
In addition to the initial challenge question, CD2H has identified 9 total questions of interest, 4 of which will be adapted if the first Challenge is successful.

 

 

The organizers of the EHR COVID-19 DREAM Challenge are pleased to announce that submitted models can now be trained and evaluated on University of Washington EHR data. The dataset has been renamed to version “07-06-2020.” The update is nonbreaking and models previously submitted will still work on the updated infrastructure.

Useful resources are available and include:

 

The EHR COVID-19 DREAM challenge is made possible by funding from the National Center for Advancing Translational Sciences (NCATS) and partnerships with the University of Washington School of Medicine Departments (Anesthesiology and Pain Medicine, Radiology and Biomedical Informatics, and Medical Education), UW Medicine Information Technology Services, the Institute of Translational Health Sciences (ITHS), the National Center for Data to Health (CD2H), Sage Bionetworks, and the CLEAR Center.